AD-A173 118

UNCLRSSIFIED

THE SHIFTING BOTTLENECK PROCEDURE FOR JOB SHOP 14

SCHEDUL INGCU) CARNEGIE-MELLON UN1Y PITTSBURGH PR

MANRGEMENT SCIENCES RESERRCH GROUP
JUL 86 MSRR-525 NO8614-85-K-8198 F/G 5/1

———— - -

B2
m
lizg
m%
s

HEEE

3 m_— 3 uuuuuu.m

———— S
e ===
L
ER

1.4
=

1.25

\

{CROCOPY RESOLUTION TEST CHART

lbum. BUREAU OF STANDARDS-1963-A

—

- S S

L4
R 4

\\\\\\\

AD-A173 110

o

IR ¥ 5.y

Carneqgie-Mellon University

PITTSBURGH, PENNSYLVANIA 15213

E et e e)
N T e

oS

's:

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WILLIAM LARIMER MELLON, FOUNDER N

DIETAISUTION STATEMENT & :
pPproved for public rel L
Distribution Unlimited N

4

e

4]

. '\ :‘I;
f

MC FILE COPY

: 86 10 01 199

RO) hﬂ(AN ‘! EPON KOO UGN ":5-\&;‘ hi.'u/h"\ PRI TI A t'i-','i;.'la‘)_. DO

W. P. #4-86-87
Management Science Research Report No. MSRR-525

Y THE SHIFTING BOTTLENECK PROCEDURE
= FOR JOB SHOP SCHEDULING

by

oy Joseph Adams, Egon Balas
| Carnegie Mellon University

and
o Daniel Zawack

oy American Airlines

[

DTIC

eLECTE

0CT 1 5 1986
July 1986

D

o e e

The research underlying this report was supported by Grant
BECS-8603192 of the National Science Foundation and Contract
N00014-86-K-0198 with the U. S. Office of Naval Research. Reproduction

) in whole or in part is permitted for any purpose of the U. S.
. . Government.

g~ -~

E

. Management Science Research Group :
g Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

[}
1

IBRODBOOUN sted bl

)y

: - Abstract

e

4,

' We describe an approximation method for solving the minimum
,a“: makespan problem of job shop scheduling. It sequences the machines
iy
lj‘:;::‘; one by one, succeasively, taking.each time the machine identified as a
2 Q::,‘

: bottleneck among the machines not yet sequenced. Every time after a
,:_“}1‘:: new machine is sequenced, all previously established sequences are
g
L locally reoptimized. @ Both the bottleneck identification and the Ilocal
,,v‘w..;

: reoptimization procedures are based on repeatedly solving certain
{:‘,;' 4 one~machine scheduling problems. Besides this straight version of the
oy
o
2'§::§; Shifting Bottleneck Procedure, we have also implemented a version that
v(“_t..‘)

"‘ applies the procedure to the nodes of a truncated search tree.
o
:3:{:: Computational testing shows that our approach yields consistently better
!‘g‘

Y _“)
:‘,:;:: results than other procedures discussed in the literature. A high point

ﬁ:’ﬁ

of our computational testing occurred when the enumerative version of
nt the Shifting Bottleneck Procedure found in a little over five minutes an
O
:"x%\‘

'{Tﬁf:: optimal schedule to a notorious ten machines/ten jobs problem on which

‘ many algorithms have been run for hours without finding an optimal
Iﬂ;
:‘:{';: solution. .
s Accesion For \
‘u.“‘i
i NTIS CRA&I)

A DTIC TAB 03
N Unannourced 0
:ﬂ 'y Justidication
oo ey
LS LN
s Bv,etvw
“_:';_:‘i bi:t ibutionl
o ‘Avauahht; Codes
‘:,:" . lﬁuA\,')i!l ;]HU' ['VOf -
o Dist {55 cial
e |

| p| |

PRI , . Y
) P ':‘u:" iGN _": re) "h‘ NSUCRICR
' - . 3 L i\ 3 . v ‘\ . 3

e AT B AT R Bl B s b A g b 4T W 00 0 B0y WY, %) 970 W0 U 0 g Ut 800, 0 e O
RN fv.‘~.';a‘lf'.",fn".,°=v§;;‘b‘-3§,|‘,’:ﬂ»'s'\»'t'z‘l'dt‘»‘.l“?ﬁv‘a.l‘ft'.!l'.%‘fl‘afl‘.h‘.'e'\" Tt '4,5?*!!%,0‘;, X '!5‘0. S

1. The Problem

The job shop scheduling or machine sequencing problem is as follows.
Jobs (items) are to be processed on machines with the c;bjoctive of minimizing
some function of the completion times of the jobs, subject to the constraints
that (i) the sequence of machines for each job is prescribed; and (ii) each
machine can process only one job at a time. The processing of a job on a
machine is called an operation; its time (duration) is fixed, and it cannot be
;::7-;:. interrupted. Here we choose the objeciive of minimizing the makespan, i.e. the

time needed for processing all jobs. The problem can then be stated as

z,;‘ min t_
tf%’iig .
B t, - t, >d, (i,§) ¢ A
o (P) i icTi
t. 20, izN
1
Y b=t 2d v -t 2d (G,0) e B, ke M |
iy " .
:‘,,'i'a;:: where d. is the (fixed) duration (processing time) and t, the (variable)

start time of operation i; N is the set of operations, M the set of machines,.

A the set of pairs of operations constrained by precedence relations

:‘izg representing condition (i) above, while Bk is the set of pairs of operations
.‘ | to be performed on machine k and which therefore cannot overlap in time, as
:;‘:;,} specified in (ii). Any feasible solution to (P) is called a schedule. For
é}ﬁ literature on this subject, see [1, 4, 5, 8, 11].
__ It is useful to represent this problem on a disjunctive graph [12, 2]
::fzgis G = (N,A,E), with node set n, ordinary (conjunctive) arc set A, aad
Vié:“ disjunctive arc set E. Figure 1 illustrates this graph for a problem with 14
‘i operations (on five jobs) and four machines. The nodes of G correspond to
gzzz operations (the source 0 and the sink n are the dummy "start" and "finish"
i":: operations), the directed arcs to precedence relations, and the pairs of

- disjunctive arcs to pairs of operations to be performed on the same machine.

AL gy Gl ARADCN DDA AN AL & 4 BN AT OOSONOBLNOS
S ‘\0"5554"'— S ARt f‘»"!*ts N "-’f"‘w “?..‘ st ST b W Tt

. . RS

The numbers on the arcs are the processing times. . The set of disjunctive

arcs E decomposes into cliques Ek’ E=0U (Bk : ksM), one for each machine.

» &
¥ ;
02 . ‘
[N .
:
£ :
5 |
:}: | We will denote by D = (N,A) the directed graph obtained from G by a
3 b
¢ removing all the disjunctive arcs. A selectiaon Sk in Ek consists of ‘
_if; exactly one member of each disjunctive arc pair of Ek' A selection is 2‘
:7;‘ \ f
*y acyclic if it contains no directed cycle. Bach acyclic selection :
s 5
) Sk corresponds to a unique sequence of the operations pertaining to machine -
,“v:’ k, and vice-versa. Thus sequencing a machine k means choosing an acyclic ’,;
S ¥
*:: selection in Bk A camplete selection S consists of the union of %
426 ‘
' selections Sk, one in each Rk’ k ¢ M. Picking a complete selection S, i.e. -
N replacing the disjunctive arc set E by the ordinary (conjunctive)
" arc set S, gives rise to the (ordinary) directed graph Ds = (N,AUS). :‘
b A
A complete selection S is acyclic if the digraph Ds is acyclic (notice that -
3 ?‘
;;E if S is acyclic then each S, k ¢ M, is acyclic, but the converse is not :‘
e 0;
::, true). Bvery acyclic complete selection S defines a family of schedules, E,
and every schedule belongs to exactly one such family. Further, the .
N
makespan of a schedule that is optimal for S8 is equal to the length of a . :;
. 3
2 i
.
.‘

DR RN e T AR _3.'.:‘.“‘-‘.,“5; .ziQ‘ RUNOOAN
. T L L I - [

IORGAARE
\ .

. 1
1 RO A RNIOUCLDG 0 WG 00 (AIIOOLY
A R KA ‘ﬂ'!;Ql'q“éfz**.’i"?c"’ﬂi‘.""vf“\“t"i,-‘,“f—"'-"%'"ﬂ‘:f"

5 b

longest path in Ds. Thus in the language of disjunctive graphs, our problem
is that of finding an acyclic complete selection S ¢ E that minimizes the
length of a longest path in the directed graph Ds.

A) 2. The Approach

N Job shop scheduling is among the hardest combinatorial optimization
E problems. Not only is it NP-complete [6], but even among members of the
latter class it belongs to the worst: we can solve exactly randomly generated
traveling salesman problems with 300-400 cities (over 100,000 variables) or set
covering problems with hundreds of constraints and thousands of variables,
but we are typically unable to schedule optimally ten jobs on ten machines.
BT Since job shop scheduling is a very important everyday practical problem, it
O is therefore natural to look for approximation methods that produce an

IO acceptable schedule in useful time.

;; . Most of the heuristic job shop scheduling procedures described in the
.:!!3

‘ﬂ‘. literature are based on "priority dispatching” rules. These are rules for
g

choosing an operation from a specified subset to be scheduled next. They
- include such criteria as SPT (shortest processing time), MWKR (most work
remaining), FCPFS (first come, first served), etc. The subset of eligible
operations is designed to produce either an "active" schedule (i.e. such that
no operation can be started earlier without delaying some other operation) or
AN a "nondelay” schedule (i.e. such that no machine is idle at a time when it
could begin executing some operation). These :lre one-pass procedures of the
l;;a..) greedy type, in that they construct a solution through a sequence of

decisions based on what seems locally best, and the decisions once made are

final. Like most procedures of this type in other areas of optimization, these

i;;gf.i heuristics are fast, and they usually find solutions that are not too bad. In

S PR 3 g RN XN 4T 3 1% 37, 0
Ve AT WM G T TR ,'(."tift.“,’ﬁ," ‘w.’,«"‘,“s“!ﬂa‘;fﬁ" "s"‘ DN X "‘ ' ‘n‘“n' '.&, A "\'. m‘;"ﬁ"‘. NSl ,l‘.!!‘:

many situations this is all that is needed, and so their use is justified.

, However, with the rapid increase in the speed of computins and the growing

1 need for efficiency in scheduling, it becomes increasingly important to explore

‘ ways of obtaining better schedules at some extra computational coast, short of

' going all the way towards the usually futile attempt of finding a guaranteed

| optimal schedule. Our paper describes an approach meant to accomplish this
"“ goal,

We msequence the machines one at a time, consecutively. In order to do

this, for each machine not yet sequenced we solve to optimality a one-machine

3;;x;;: scheduling problem that is a relaxation of the original problem, and use the
e
’::::5: outcome both to rank the machines and to sequence the machine with highest

rank. Every time a new machine has been sequenced, we reoptimize the

:;;: sequence of each ' previously sequenced machine that is susceptible to
E{i:} improvement by again solving a one-machine problem.
H Our method of solving the one-machine problems is not new; although we
::,;::::? have speeded up by an order of magnitude the time required for generating
EE?;:: these problems. Instead, the main contribution of our approach is the way we
v;*’. uge this relaxation to decide upon the order in which the machines should be
f‘:;:’i:" sequenced. This is based on the classic idea of giving priority to bottleneck
E»:E:g machines.
A : There is more than one way in which a machine can be viewed as a
:gg‘ss bottleneck. A first concept of this type is that of criticality. Given a
«E:i:::i selection S = U (Sk : kz2M) and the corresponding digraph Ds, we say that
m: machine k is critical with respect to S (or the schedule associated with §S)
;EE::E?. if sk has some arc on a longest path in DS. This definition certainly
‘.':ES makes sense in view of the known fact [2] that any schedule better than the
e one associated with S uses a selection in which at least one arc of every
oA]
) 4
¢)

ThY AR JEPRT e bty TR OIORY O A AN T i I T MO
SRt R R IREE S Rt

longest path in Ds is reversed. While appealing and theoretically justified,

this notion is however not sufficiently operational for our purposes: it simply

partitions the set of machines into critical and n;:ncritical ones without
» ~ offering means of distinguishing between degrees of criticality. In order to
4 ' prioritize the machines, we need a concept that expresses the bottleneck
quality as a matter of degree rather than a yes or no property.‘ This quality
could be measured, for instance, by the marginal utility of the machine in

reducing the makespan, were it not for the practical difficulty of assessing

N the latter. Instead, we use as a measure of the bottleneck quality of machine
o8 k the value of an optimal solution to a certain one-machine scheduling
. problem on machine k. To be more specific, let Mo € M be the set of machines

that have already been sequenced by choosing selections Sp, Pt Mo, and let

R (P(k,Mo)) be the problem obtained from (P) by (i) replacing each disjunctive

:}:: arc set Ep, P ¢t M., by the corresponding selection Sp, and (ii) deleting
!Q. o R
o

W each disjunctive arc set Ep, petM\ Mo, p# k. This problem is equivalent
,i} to minimizing maximum lateness in a one—machine scheduling problem (for
o

'::E‘ machine k) with due dates. Machine m is then called the bottleneck among
»

) the machines indexed by M \ Mo if v(n,Mo) = max{v(k,Mo) t ke M\ Mo}, where
o v(k,My) is the value of an optimal solution to (P(k,My)).

::5: A brief statement of the Shifting Bottleneck Procedure is as follows.
""‘e_l

Let Mo be the set of machines already sequenced (Mo = ¢ at the start).

Step 1. Identify the bottleneck machine m among the machines

ksM\ Mo and sequence it optimally. Set Mo « Mo U (m} and go to 2.
Step 2. Reoptimize the sequence of each critical machine k & M0 in
*) turn, while keeping the other sequences fixed. Then if Mo = M, stop; other-

N wise go to 1.

The details are discussed in the next three sections.

s P o K (4"

NOIGCOSOCMEROOOOCOCOO D AKX | NJO) » X ANWLAG L%t iy % h
ISR IR AR XN vi‘,-}ﬁ?ﬁ’ﬂ.‘j‘.‘tnp‘lls}“|"hf"‘!:‘.‘\ _;ti‘."\es' ?\'a.‘.'g)\f.,ilf..'ﬁ'f.’s'.ﬂ‘_g L?“.fl,.‘g.‘l,c',!‘w L2 i,fi_,l'l) ‘qfl,q‘l‘ O ’ L Q U N Lo N €

YT

3. An O(n) Longest Path Algorithm
To identify in Step 1 the next bottleneck machine to be sequenced,
for each k ¢+ M \ Mo we solve the problem

min t
n
tj - t:i. > di (i,j§) = U (Sp : paMo) u A
(P(k,Mp)) £, 20 ieN
t.-¢t.>d

j i-ini_tjzdj (i,j)tEk

Also, to reoptimize in Step 2 the sequence of each critical machine
ks Mo, for each such wsachine we solve a problem of the form (P(k,M(’)))
for some subset M(') € Mo.

Problem (P(k,Mo)) is equivalent to that of finding a schedule for machine
k that minimizes the maximum lateness, given that each operation i to be
performed on machine k has, besides the processing time di’ also a release
time r, and a due date fi; where»ri is the length of a longest path from
source to node i in D,r, and fi is‘the difference between the 1length of a
longest path from source to sink and that of a longest path from node i to the
sink, in DT’ with T := U (Sp : p:Mo). This latter problem in turn can be
viewed as a minimum makespan problem where each job has to be processed
in order by three machines, Ml. M2 and M3’ of which Ml and M3 have
infinite capacity while M2 processes one job at a time, and where the
processing time of job i is r, on Ml’ di on M2’ and q; := L - fi on M3,

with L equal to the length of a longest source—sink path in D The numbers

T
r and q; are sometimes referred to as the "head”" and the "tail" of job i.

Thus the one-machine problems that we solve during the algorithm are

of the form

g . 4% A
0,{1_ RO l t‘l 17y ’ng

N ‘ ,,:56

)
“;!

Wy b, " it
K\ ‘i* Lt 'z‘{‘s l't‘l".t.; a"‘\' W ‘o‘.!l‘.'l S, '..l',v*l"fl\ 5‘ ooty l\'o'n

5

SRR

v

u
+
-]

i = N¥
3 P¥(k,M,) t. >r

t.-t.)d.vti-t.>d. (:i.,j)cEk

J 1" 1 J - J
where the ro and q; are defined as above, and N¥ is the set of jobs to be
d&f processed on machine k (corresponding to M2 in this model).
B
qii In order to set up problem P*(k,Mo) we have to solve 2|N*| longest path

problems in DT to calculate the numbers ry and 9;- Solving a longest

path problem in an acyclic network on |N*| nodes by standard methods

ig? takes 0(|N*|2) time. We use instead an O(|N¥}) algorithm that takes
éff advantage of the special structure of the digraphs DT on which our problems
iaﬁ are defined.

g& \Typically, the digraphs DT are quite dense: they contain a complete
R subgraph for every p & Ho. However, it is well known that an acyclic
;gg complete directed graph is the transitive closure of its unique directed
;3' Hamilton path. Therefore, of the |Sp|(|Sp|-1) / 2 arcs of each such
3 subgraph, only the |Sp| arcs that form the unique Hamilton path in the
ﬁi} subgraph are of consequence for the longest path calculation; the rest
gg' can be deleted or simply ignored. In the resulting digraph, say D¥,
b every node except for the source and sink has at least one and at most
g? two predecessors (successors). The 1labeling algorithm based on Bellman’s
;¥f equations can then be modified as follows.

T? A node i can be labeled when its predecessors have been labeled. We
%g‘ . keep all labeled nodes in a queue. To atart, we label the source node and
Eﬁ place it into the queue. Then we repeatedly apply the following

Vs

¢ S SR N ARPT A 3 ot "
L x} e,'i Nk "'u"*"?t‘-‘ ' .\2‘“!.‘\9"&“0&'&"ns'a" At

A N
IR A A I R W IR N0 Y 3 X) OO (AT A O Y,
N N R A O R e O U e M AL SO R

Iterative step. Pick the next node from the head of the queue, say i,
remove it from the queue, and for each successor j of i in D;’

— check whether j can be labeled

: ::, — if so, label j and append it to the tail of the queue.

“::.: Stop when the queue is empty.

v“i“i;k Bach node i has at most two successors in D,}‘,- and a successor j of i
::::g: has at most one predecessor other than i; hence the Iterative Step takes

constant time, and it is applied |N*¥| times. Thus the algorithm takes

o(IN¥|) time.

BT

:E‘{:ss:: In our implementation, the graph D; is not constructed explicitly.
';:;'5: . Rather than delete the redundent arcs, we keep two sets of lists: a "job
,«“” list" for each job, containing the sequence of operations pertaining to that
:i%) job, and a "machine list"” for each machine already sequenced, containing the
ft“!. sequence of operations pertaining to that machine. Every node then appears
i;:‘: ’ on exactly one job list and exactly one machine list; and its predecessors
EE::‘:E;: and/or successors are its neighbors on the two lists.

:‘:::' While the central idea of the shifting bottleneck procedure does not
’:EEEEE depend on the way one solves the longest path problems encéuntered, speeding
:3:':23: up by an order of magnitude the time required for the longest path calcula—
’.‘_:3:3 tions, which is the most time—consuming part of our procedure, has had a major
effect on the overall efficiency of the latter.

‘:z s 4. Solving the One-Machine Problem

:‘:’o“ Having generated a proi:l P*(k,Mo), we then solve it by the algorithm of
E;::v::: Carlier [3], which is closely related to the one by McMahon and
;?'23 Florian [9). Although this problem is NP-complete in the strong sense (6],
;;:‘:-' ; both of the above algorithms, which are of the branch and bound type, are
W

i 8

:".:1‘!’.-'.:!.'!2-Ag:‘«-!‘.,*_,', e T D o SISO NIN I NI UL R SRS

known to be able to solve in a matter of seconds fairly large problems with
data drawn from a realistic range: Lenstra [8] and Rinnooy Kan [11] report
favorable results with the algorithm of [9] on problems with up to 80 jobs;
Carlier [3] reports excellent results with his version of the algorithm on
problems with up to 1,000 jobs.

For the sake of completeness, we outline here the version of Carlier’s
algorithm that we implemented. For details the reader is referred to [3].

At every node of the branch and .bound tree, a heuristic based on the
MWKR (most work remaining) priority dispatching rule is applied to the

current one-machine problem. To be specific, we start by setting

t = 1||J'.n{!"j : j e N¥}, S =N¥, and then repeatedly execute the following

Iterative Step. Among the unscheduled jobs reéady to be scheduled at
time t (i.e., those j ¢ S such that t"i <t), choose‘ one, say Jj, with the
dreatest 9 (if there are ties, bregk them by giving preference to the
greatest di)’ and schedule it by setting tj t= t, S :=8\ {j}. Then if
S = ¢, stop; othemis_e set t := max{t‘j + dj’ min{r‘j : J £ 8}} and return.

Along with the schedule generated by the above heuristic, we obtain a
critical path in the disjunctive graph associated with the problem. Let
(1), «.y j(p) be the nodes on this critical path other than the source and sink
(in case of multiple critical paths, any one can serve). Let k be the lar-

gest integer in {1, ..., p} such that qj (%) < q and let

Jj(p)’
J = {J(k+1), ..., j(p)}. The set J plays two roles. First,
h(J) := m:'u){ri :ie J} + }':(di : igJ) + min{qi t i J)
easily seen to be a lower bound on the minimum makespan. Second, it can

be shown that in any optimal schedule job j(k) comes either before or after

all jobs i ¢ J.

e e M T e S Y (S
BRI PN W iy "(*""“'"‘ POXANSNEN D '(""'

o ¥

LT e

WAL YAT, .

H A

i

~ " =) "'

o e Ao Als

e While the lower bound h(J) can be used to discard nodes of the branch
»» and bound tree for which the upper bound is attained, the dichotomy defined
by the position of j(k) relative to J can serve as the basis of a branching

rule. Namely, if the current node of the search tree cannot be discarded by

- comparing the lower and upper bounds, it can be replaced by two

i successor nodes, one in which job j(k) has a new tail q3(k), large enough

KR to force the heuristic to schedule job j(k) before all i ¢ J, end a second
25:“' one in which job j(k) has a new head r},), large epough to have job (k)
- scheduled after all i z J.

:Eii*g::: , The branch and bound trees generated by the procedure are typically
:*E%E much smaller than n, and they rarely exceed 2n.

‘,‘.‘{; 5. The Local Reoptimization Procedure

o

&EEE::E Let Mo be the set of machines already sequenced, and let k(i). ey k(p)
:‘: be an arbitrary ordering of Mo (here p = |M°I). By a local reoptimization
:§‘§: cycle we mean the following procedure. For i=1, ..., p, solve the
:;:E"g; . problem (P*(k(i),Mo\{k(i)})) and substitute the optimal selection sk(i) for
. the old selection. As long as |Mo| < IM| -1, we go through at most three
.::;‘E',;; local reoptimization cycles for each set Mo. At the last step, when
S:EE;E’: |Mo| = |M| - 1, we continue the local reoptimization to the point where
H there is no improvement for a full cycle.

;‘E‘%?: The problems (P*(k(i),Mo\{k(i)})) encountered during local reoptimization
:;%:% are generated and solved by the same techniques as the problems (P*(k,Mo)),
:i_ discussed in sections 3 and 4. The ordering k(1), ..., k(p) of M, is at
,: ': first given by the order in which the machines indexed by My were sequenced.
:;é%" Bvery time a full cycle is completed, the elements of Mo are rec;rdered

10

»
iy

BRI RATICAX AR AOAO00 \ 3 bIT AL R DAy p
R A A AR A G ,"t’." R A0 < (XX R))‘ O "f&',‘i,"t..“
A £ LA AL\ 4

o i\ \
'!‘.i"‘v.3\'."%"3,"2""\'»“‘@ 'v'i’t’l‘!’t DA

according to decreasing values of the solutions to the problem
(PH(k(3), Mg\ {k(1)})).

Finally, wupon completion of the 1local reoptimization procedure
for a given "0' we found it useful to repeat the procedure after temporarily
¢ removing from the problem the last (according to the current ordering) «
| noncritical machines, i.e. deleting the corresponding selectionu sk(i) from

the associated graph (we take a« to be the minimum of |M Il/ 2

and the number of
noncritical machines in M(). At the end of the cycle, the machines that had
- been removed are reintroduced one by one, successively, and the cycle is
completed. This second, modified procedure typically finds additional

" improvements.

6. Truncated Enumeration

As the computational results of the next section show, the shifting
< bottleneck procedure almost always obtains considerably better schedules than
i the best among the priority d{spatch rule heuristics, and it frequently finds
"| an optimal schedule. Nevertheless, for situations when the quality of the
schedule is sufficiently important to justify a more intensive computational
effort, we have deyeloped a second version of our approach, which applies the
1t shifting bottleneck% procedure as described above to the nodes of a truncated
enumeration tree.

The nodes and arcs of our search tree can be described as follows.
i Every node corresponds to a set MO of machines that have been sequenced.

In particular, the node corresponding to a given Mo represents the problem

- (P(Mo)) obtained from (P) by replacing the disjunctive arc sets Ep, P Mo.

N4

'::: by the selections Sp, P ¢t M. Every arc corresponds to a pair of sets Mo,]
"

Mk’ where Mk = Mo U {(k} for some k = Mo\ M. At a typical node of the

: \.1 T ‘ v NEDELE i o AN a"s t ‘? f " (" !"

¥ RSN vy ¢ (R (NG
4!'551 e l zy““_ ‘_ll‘q,.’iaul ,\ iy !‘. : :d.‘ s I’ ‘1 ‘.g .3‘ X ' iy l“ G‘O HQ “i ..‘.“.‘ .“l. X " &

L L

v search tree corresponding to some set Mo, we apply to (P(Mo)') the shifting
‘ bottleneck procedure as described in the previous sections, with the
difference that whenever we rank the machines according to decreasing v(k,Mo)
> in order to identify the current bottleneck, we store a certain number of the
N one-machine problems generated for further exploration later in the process.
To be specific, for a node corresponding to a given Mo, we store as successor
nodes in the search tree the f(4) highest ranking problems (P¥(k,M;)),
ks M\ M. Here ¢ is the level of the tree, equal to IMOI, and f is a
decreasing function of ¢ whose parameters are chosen to reflect consider-

+ ations based on problem size, available storage space and limits on computing

U

::l:e time.

L

A second instrument for limiting the size of the search tree is a penalty

g' function, defined for every node, that penalizes the choices made at different

i;‘i levels in generating the node in question, in proportion to their deviation

',:” from the bottleneck, and with a weighting that is heavier for the higher than

s, for the lower levels of the tree. Whenever the value of the penalty function

:; for a node exceeds a predetermined limit, the node is discarded.

: Whenever a node of the search tree is chosen to be processed, in

j',-_:ﬂ keeping with the bottleneck principle it is the highest-ranking unexplored

’ node among the successors of its parent node. As to our search strategy, we
use a combination of breadth first with depth first. In a first phase, we

f;é generate all the nodes provided for by the successor function f(#¢) for the

,‘. levels £ = 1, ..., ¢* (we actually use ¢* = fal/?])., At the end of this

s phase, all the active nodes of the search tree are on level t¥, Further, they

::: form groups of f£($%) nodes, each group containing the successors of a node

o
-,

4 on level ¢% -1, Next we awitch to a procedure that selects the

highest-ranking member of one of the groups, based on an evaluation defined

- d
3 U
5 h
‘:‘: PR (\ oy R RS TO ' ¥ NA) b 3 & S I o {3 :‘
BN O &7y S Vagh L 'M.‘inﬁ. PG AN _"?.ﬁ,fﬂ) 5!;’3 ,’gh‘.'";l "%, Wy, S ity “;fi‘i‘h‘h“q, ‘g‘j‘c.’\ai%‘ﬂ\ . ¥ 4,89 ."‘a.! 3 t‘o’t‘a’\‘:.t.e] ,l‘i"""‘!. ‘a"‘:’,&b‘\!\'h "'kv"“

for every group, lnd‘ explores the associated branch straight to the bottom of
the search tree, or as far as the penalty function permits. Naturally, the
current best solution value is always stored as an upper bound, and branches
on which the upper bound is attained are abandoned. When the bottom of
the tree is reached or further advance along a branch is foregone because of
the penalty function or the bound, we select the highest-ranking member of

another group of nodes and continue.

7. Computational Experience
A FORTRAN implementation of the Shifting Bottleneck procedure was

tested on a VAX 780/11, on problems taken from the literature or generated

for the purposes of this experiment. The problems range from small ones, for
4 which an optimal solution was known, to problems involving up to 500
operations.

The problems in Tables 1 and 2 have the following characteristics. All
jobs have to be processed on all machines (except for Problem 1, which has a
more special structure). The sequence of machines for each job is randomly
) generated from a uniform distribution. Problem 1 is from (8], problems 2, 3
and 4 are from [10], problems 10-15 are from (7], while the remaining problems
A were generated by the authors, with processing times randomly drawn from a

uniform distribution on the interval (50, 100] for problem 5, [25, 100] for
W problem 6, [11, 40] for problems 7, 8, 9, ;nd [5, 99] for problems 16-19. The
» Tables give the dimensions of the problems and the reaults obtained by
solving them with the Shifting Bottleneck procedure in ita straight version
(SBI), as well as in its enumerative version (SBII).

As the results show, SBI took on the order of one to two minutes for the
larger problems, although it involved hundreds of micro-runs, i.e. one-machine

problems. The degree of difficulty of solving a problem by SBI of course

13

RN PUL o . T IBOOLSRIOUOLIDLN AR EARCI A 0000 MR AR SN RN N
. o ff’u,"' *Jr‘_";',“w‘ UK ‘-:?“:teué' Ml e Y R AR ROONONR

PR S
OO

0 y ARG
’i‘g*’i":‘ ,;t‘;ﬂl“:u'.\“:n';,‘h"

A
l'q

CALBUCAMR A)
Y ,:l‘f‘ﬁ‘; N ;‘_I‘ _‘

()
.

SpUOIIE® (¢ J93je puno} enjea Jemrido g

[omijdo oq 03 umouy anfea %

W2[qo1d }Oous[}130q [9A3] 3BT} Y} J10J IN[UA WOTIN[OS Aq USATS panoq JemoT :gT
uni sem JgS SOET} JO JaqWNU SUMI-01D8K

pPaATos sE9Iqoad SUIYOVE-IUO JO JOogENU SUNI-OJIITH

POUTEIqO I[NpayOs 38aq 9Y} jo uedsayuw :anyep

1T
IO

L)

e
-

2
-

919 ot ziet| gL o8 |zeve | e 00t 0z gt 6 N
69 gE ouLt| st sott | zo'szt| wes 00€ 0z qt 8
099 ot 6921| o1 Lot | e8°stt| oEL 00E 0z St L
SE8 EvE tott| 6 gez | 29°21| z96 0ot ot 0t 9
gzot| zst gost| 6zt Bt | ocs| o0 oot ot ot s 3
vott| 2z [evro8 | sutn 1L os'e | oezt 00t 02 g v
808 0Lz 198 |4%0e6 6v2 | ot-ot] stot | oot ot ot £
29 — | — | — | = 09't | #ss 9t 9 9 z
el —_] — | — 12 050 | set 0z v S 1
suna oag suma oeg suoty sout
w1 | o | ndd | onter | oxomw | ndo | ontea | -wsedo | sqor | —yoew | weyqoxg
1188 168 30 zequny
1 aiqeL

D e

........ : ST
N P s g

-

Tewtjdo aq 03 paaoad ‘snyea yemijdo %
[°1qe] 298] °‘SUNJ-OJOEN ‘SUNI-OJOTIE ‘anyep

98632 — -— -— SL Lv°LZ | %9862 005 0S) 61
¥982 — — — 86 zv'eg | sve82 00S 0S o1 81
8222 — — -— 922 £0°9L | #8222 oov ov ot LT
£952 — -— — 19 S0°TU | »£9S2 oov ov ot 91
0981 — — -— vot 90°62| %0981 00t ot ot ST
8Ll — — — At 9z°8t| s¥8BLI 00€ 0 ot 12
SE2l 9 L8 1621 vEY ve-ov| szet 002 02 ot £l “
8121 29 oL 4 74 929 vS'8v| vOET 002 0z) 2t
£16 vy 1287 6 £62 v2°61| OVOl 091 St o1 n
966 74 29¢ ¥801 £VE 68°12| aLIl 091 ST ot)
suna oeg suna oeg suot} sout
g1 | -oxouy ndo | enyep | -oxotH nNdd | onfey | —®aedp | sqor | —youy | weyqoxg
. 1148 165 Jo Jequmy

T oquL

sharply increases with the number of machines. However, for a given number

of machines, an increase in the number of jobs does not seem to make the
problem more difficult; on the contrary, while the computational effort shows a
g moderate increase, the quality of the solutions found seems to improve. In all .
the problems with ten machines and 30 or more jobs, without exception, the
optimal solution was found by SBI and was proved to be optimal, because the
hely lower bound provided by the bottleneck problem on the first level, i.e. the
value max{v(k,¢) : k = M}, was not exceeded by the makespan of the schedule

found by the procedure. Naturally, in these casea the proven optimality of

i;g‘::" the solution has eliminated the need to apply SBII. This seems to be quite a
R0
",n::: remarkable property of the Shifting Bottleneck Procedure.

Among the problems of Table 1, Problem 3 is the notorious ten jobs/ten

N8 machines problem from Muth and Thompson [10, p. 236] that has defied
s‘% solution for more than 20 years in spite of the fact that every available
%"u"&t

algorithm was tried on it. Over the years, better and better solutions were

',:{-ig;‘ discovered, usually in computer runs that took several hour; and generated
::"S';E‘: tens of thousands of search tree nodes. A couple of years ago, a solution
" with a value of 930 was found (a new record at the time) at the end of just
‘.'-:::3:5: such a long run. More recently J. Carlier and E. Pinson have announced that
'?;;:.:‘ after another long run that generatéd 22,000 nodes in five hours on a Primei
Tha 2655 computer this solution was proved to be optimal [8a]. The enumerative
:gsg: version of the Shifting Bottleneck procedure found this solution in just over
"EEEEEE five minutes of VAX 780/11 time (without, however, proving optimality).

oo In order to compare our procedure with other methods, we solved 40 test
:EEEE:': problems generated by Lawrence [7] that were also solved by him with ten
:'::Eéf different procedures based on priority dispatching rules, both straight and

randomized. In these 40 problems, each job is to be processed on every

16

R WA OO OO0
L ‘!'r‘ ¢ ‘A‘!‘L“‘:’."i‘ ."‘,'A'Q.»“'-'a"i,'q’.“P L

A P Ve TN P g g Wy e 1 r Ty X D ST ARG
AR ,‘1‘;‘3031'7"‘*&';'&'. c'.‘\f,‘s’w A &,;.,Af;, h v}iﬁéf.."»’M!';,‘:l.’,lg‘.h‘h ,i.,;,%\,f;:._'s,,:25"4.;,{’ A X

S

machine, the sequence of machines for each job is random, and the processing
times are randomly drawn integers from the interval [5, 99]). (Problems 1, 2 of
Tables 7, 8, 9 are the same as Problems 10-15 of Table 2.)
The ten priority dispatching rules (p.d.r.’s in the sequel) used by
Lawrence are as follows:
1. PCPFS (First Come First Served). Select the operation that
becomes available at the earliest time.
2, LST (Late Start Time). Select the operation with earliest late
start time (same as MWKR).
E% 3. EPT (Barly Finish Time). Select the operation that can be
finished earliest.
4. LPT (Late Finish Time). Select the operation with the earliest
phe late finish time.
':;‘-;7 : 5. MINSLK (Minimuﬁ Slack). Select the operation with minimum slack
time.
et . 6. SPT (Shortest Processing Time). Select the operation with the
shortest processing time.
7. LPT (Longest Processing Time). Select the operation with the
: longest processing time.
‘ 8. MIS (Most Immediate Successors). Select the operation with the
largest number of successors.
' : 9. FA (First Available). Select the first available operation.
 5: 10. RANDOM. Select randomly among the available operations.
These p.d.r.’s were first applied in a straightforward fashion, then each of

Z;;,« them was randomized. The randomized rule is to select one of the available

PP Ty

T operations at random from a probability distribution which makes the odds of

being selected proportional to the priority assigned to each operation by the

17

s o i \ . L . OO o OO OO
AR AT R TR gy b Vg By ORIOAIOOGOO IO (Ml) ’ D N 2 A OACSOUACAIUA LY v et
D A T G e e f,!ﬁ,h.‘,ufmf.h..!lf,?a!,'k',,*n:t'o,:!u,; ntnanld »_3‘:,;’».; OSDATIUR AR B AT

;“’%.é given dispatching rule. The run is then repeated ten times, and the best
result obtained is reported.

On the 40 test problems, none of the ten priority dispatching rules
Jeg dominated all the others. Eight of the ten rules gave the best result on at
WO least one problem; the remaining two, LPT and FA, were never best. Since the
. computing times required by any of the p.d.r.~based procedures are modest
E (although much less so in the randomized than in the straight case), we chose
k'“: the beat of the ten results for each problem and recorded as computing time

the sum of the CPU times for the runs with the eight rules that were
1:‘:‘4- effective in at least one case (in other words, we simply ignored' the time for
O the runs with the two rules that proved ineffective). Tables 3 - 10 show

the results, alongside with those obtained for the straight and the

"3‘3 N enumerative versions of the Shifting Bottleneck Procedure (SBI and SBII,
'::'::?i respectively).

od As the tables show, the straight version of the Shifting Bottleneck
%E;: Procedure (SBI) finds solutions that are most of the time (in 38 out of the 40
'E:‘,: cases) better than the solutiona found by the p.d.r.-based procedures,
e whether in their straight or randomized version, at a computational cost that
::g:z:: is usually comparable to that of the straight p.d.r.-based procedure, but at
"»: least an order of magnitude lower than that of the randomized version of the
v ',; procedure. ,

5‘33’3:. Further, the enumerative version of the Shifting Bottleneck Procedure
:ﬁ: (SBII) most of the time finds substantially improved solutions over those found
:"*:\ by the straight version. In order to make the comparison between SBII and
:E}::E: the p.d.r.-based procedures conclusive, SBII was run on each of the 40
:53:?:, problems with a time limit set to the CPU time required by the randomized

18

5 B e Tyt L AT Ve W5 0 Ty W00 37y A0y 1% 17) W% DYy, DAY ooy MM
A R R R AR SN K ADA SCRIIN B D X G DN < TN

T RN L Vel - At S B B ey W L sl e e S T o R PR ARy R SN

Temt3ydo aq 03 paaoad uworIIN[O§ %

eanpaocoad peseq--a °p °d pazimopuel 3y} Aq punoj 3By} JOAO IN[BA UOTIN[OS UT JUSESACIJENY JUSOASd :jusEdIAOIdE]
anrea 3saq 9y} aae jey] arna Juigojedsip L3raorad :a[nay }sag

I @1qel @98 :g] °‘suni-oJouy ‘onyep

20| zo| ess 2s'0 | se69 | or‘8'9-t| oot | wes | s'vz|sec| wes | s
15y |98c | 298| 19 |vov| e69|eLz| seg 9 6et | 129 | ¥ eev| o9 | v
tsv | ver|see| 19 |8ie| sos |svz| g0 £ et | ves | o 22y | g9 | ¢
g6',| ot1]|9mw| o |gszt| e9 |69t]| oz 9 gat | | ¥ gov | 26 | 2
— | 16°1 | 999 9z°1 | s999 8 wst| sw9| 8 e | e |t
otrg | oes opng | oes

x x sung| oeg des 190 | ndo | onrea | 1se@ | nao | onpea
r1es | 188 | @1 | —oaoew| ndo | entea | ndo | enyea

poz wopuey WBreaS -1
JusweAcIde] 1188 | 198 - o[ny Buryojedstq A3TIorid ~id

8qof Q1 ‘seulqoum g
€ equL

e i A e . g e e . W e Te T U S T

2 o, JON M X
RTIER

ALyt Ly

)
”l‘ﬁ'lr?ge Ll g

o
3

g d]
T

ORI,
?ﬁa‘,;t“’!

€ 9[qul 998 pusBey log

-_— 0 8s6 18°0 | *696 8'v't | 12 %656 ov'8 | %656

—— {1'o 196 : 980 | *196 8'9‘e | 092 256

20

SE‘0 | 2°0 - ,mww 4 2S°v | %x£98 e 898 0t 08¢ 998 8z°8 088

| m|m| XD

S
1e°8 256 L4
€
[4

—— |92°t 068 -— | — —— | 19°T | %068 v 61 026 Ls's e

-_— 0 926 -— 1 -—= | 82°1 | %926 8°1 gee L26 I 0z'8 L2 | ¢

orny o3 Iy | 998
4 % suny| o9§ o9§ Isog ndd | anyeA | I¥seg | NdO anyep
1188 1498 a1 —-0J38K| NdD onyea idD | anyeA

-

xS
-
P
“.
25
o
%
s
-
N
'
T
s
ol
o
s
..)
%
-
s
oo
o
"
L=
.
o
i
>
o
e
)
‘i
k.
o
ot
e
S
Y %
"
Iy
ol
%o
25
e
T
o
o
-

pazwmopuey WP#reas

o |

SRS

O

JusmaA0ade] 1188 18s ainy Burypjedsyg A3raorad -~

sqof G ‘seuiyoewm g
¥ oqey

- P - -
. g " s - - -~ T - on e e S e - .
I an s e - ..Vo\t by '.“‘ e - 5 bf"\\ B .“fxl“‘l’ T e A, L &S E M T . N
* " . - SRt e . .
: = i o - - e e e By i 5
- L . -~ - - S P A e~ N -

€ 91qe] 338 puapay 104

AN

— |8 — | — | — | s60€ | %0zt | 9 tze | viet | € |wLst| ozEl | S
— 0 — | — | — | v6'0 | sz621 | 8*v‘1 | 626 | e621 | ¥'T | zL'vi | €621 | W
— 0 ——)} — | ——le&z1| 0ot |82t |60r| totU| 8 |aurwr| tSTT| €
— 0 — | — | — |80 |seco1 | v‘'t| 162 | OvOT | ¥t |89ZT| wWOU| 2
— 0 ~—— | — | — | 0z | szzz1 | 8'v'e | voe | €221 | 8 | wvest| €22l | 1
orng | o8 o[ny | oog
% % suny| oeg oeg 3s9g | ndo | enfea | Iseg | ndo | enyea
Ies | Ies —oxoeW| ndd | enreA | ndd | enyEA
pozmopuey WBreng =]
JueEaA0Idn] I18s 168 sIny Buryojedstq A3riorid —od
8qof (g ‘seuiyowm g
S elquL

a0t

‘i‘&t"'-.\

r

Gantediohe

} LA
Avv’?l’ 3“ -‘i“'i“gft

rvy)

v

1
"a.‘t \

b

s A
RO

LY

s

-
L5

‘

‘%:5:!‘
g8y
o
"l"'&‘
3t i
W ¥ H
1EE
» ' : :
g w|® B 8
; - < | < 5
L] m e N
c|lo| o 5'3
)] 0 | e -
o AnaeE
\'. h °
1 It
’t! 2
: § 2 1|3
4;*;&“ : g 8
i a
A B m s
,o:!:;:" : E 3 g
;'_“\‘ N
” | g 3|8
L > :
.g >
:*' e 8 s m
“’?‘:J ©= =8 § <« | &
:"‘:‘: : 20 8 —é
N:::. ;% ; — S - w
vt .
(A g o % - - q g s
~N
e |~ £
rh? a g - o~ S: 4‘5
DO ’ '-.
‘:z:. s g § 8 r—t %
) .
; S |2 8 w | @ v
RS
I :
HIE
7 5 ol K-
. @ | e :
;?“:l:i -s m |
:iz‘;:: ° . g 8|S -
??::‘| & ! s g m 8
:“s"’ : [— g s ol
i1t ¢8| 3
Pty ﬂ m
i 3 s |E]8 .
i z 288|235
f‘:\‘ 8 - p: o 2
] HEF %
‘ E‘ L} < (3¢ .g i ‘
LN : ‘D
: H gq
A E 8 8 |
5 £15]52 (818 33
5 3 il I 0 £
i‘ g‘? : G 2 < 8 e
Mk ; m .
Ry 5 3 b b. m
- 3 m
(] 8 g i
T |E|8 :
g w %3
L 8 — @ W
é ' | = &
£~ |
- N .5 :
(] P ;
< "] 3 4
L.
- 1]
|
-4

22

IR P J
“‘.' ’ ¥ ‘
. 3 : * .)
. 3t '
! o o
‘.v‘ﬁ. LA
) .9, "3 .)
B LA b'*‘ #t % ‘J
R \‘.." i,
-3 3(‘.’1',4%' .i‘ .l' “3‘ i '\
* N .i“i (LA \j -
by v.h..h.,’;}‘* ‘A" ¥ \
A e \i;t‘ J 4
IO PR e .
We s ﬂ“,i“:ﬂ“" 2 .
3 ‘l‘“ \ - g

Q
X Ret XA
SO QAN
RN

A
(A}

2 TN W ORI O W TreTT ey T W W -

1 e
et
a‘;‘::
1,
4-'] N | o —
: He |2|8|8[8|E
s 7] o|lalo|w|m
¢r§"= 4
R) o~ o o] m
W & -]l | e
Bl ZBe [s]c|<]<]|~
tord
‘ - 7] l
+
g 1EIBREIE
ﬂ"'. s N o 8 [+<]
Ay -
A'n:"
» 'v.
N 10 olw|w
O —_ 3] 2 Q113|818 ¢&
i = £
)::l v :
) Q o [+2] [Te) < [=]
e E Q O]~ ®
" ow N || N]|
vy o »
Ve 3 S & |w | e~
by] A~
& [1= oo | e
ot] > =] —t —
i 2
Vi o 29 ofjln]|]ow]lw|o
~ ™ own ~lole]|w]l~
o N — N[m]|la]I8 | &
Ta Y
s 28 |2
o £ P
o &3 3 nlel=lol e
A ¢ i 213181813
,ao"x\& a > R
[~
b1) ®
o {00 | O |0]| @ -
g 2 — <
-]
o
] o floa | < | e~ o
N E Q 1] i — g (]
2 § Crn]lom|< || < | <
l;"i é o<} o
o w| | 3 Rlelgle]g
Wyl 1% 3 2181812189
! > R = P R A
(AKX
.z." <
e -4 oo
]] [+] < © 4 []
[o o [} é
PRy a o
o 2
1}!-‘ ot - 8 o ™ o
sl lB8IS121S2]|5] @
e ol g]|l ||| x|« L)
_— &: x - |~~~ .3
3 gl - V]
i 212 [glglg|s|a] ¢
S o qlS|A]l=~]| w
Lo) > =t [l i 4 4
i"ng e -]
Y 5
Dy]
.é -l o (] L)) [Te))
X r—{
[N ; bt
h‘ :8 _

23

AR SR S Ve e 0y Uy T UOGE
.4.&‘»;:-,‘,-,'5‘4 'lu_.5.!‘l,.b\ﬂb,ﬂ.&;l‘ﬁ|0‘\?leu:,!.,_“i&,.ﬂ’!"‘l‘ﬁlﬁ’ﬁn ;;,\é?nq:,u%:‘.,’f.gyb,ytl,.l ok

9 o[qu} o8 pusPay Jog

4
gt ot {969 | gsel w | 199 [s9eet [8.6 | €ovi { 9 |98 sosT | ¥ L9z | w09t | S *
ge'0T |ue'9 | vrtl 1w | 28 |6e2t |oey | w621 | 1 | z68 | zeet | ot | sesz | esst | ¥
v8°0t |tvot [9t2t | 89 | 16 |oget |98z | 992t | ¢ |voe | zovi | 1 g'gz | st | ¢
68'8 |6v'9 |9e2t | 9 | e8| 1621 |9sv | gzet | 9 |ues| st | €& |6Lsz| zevi | 2
98°01 |eo's | 812t | 29 | whe |veer |sev | woer | v | wwe | ewet]| U |zowe | st |t
erny | des oty | oeg
% 3 sunyj | 4008 oeg 199g | ndo | ontea | 1se@ | ndd | enyea

114s | 188 | @1 | -oaoen| ndo | entea | ndo | entea

pozmopuey WBreNS woy
juswRAcIdm] 1188 {1 o[y Butyojedsiq A3rTorig v

#qof Z ‘seujyowwm gy
8 oqulL

v Y ar w

,,,,,,,
<<<<<<<

> B A B
g o i e

9 9[qe], 998 puaay aog

L1861 19°99 1602

P8I g9°95 | 9z61

2081 EU°vs 181

6881 9161 8v°LS 6961

|8 98L1 (A 11 (4 28] SE6l

o[y | 298 |- J9g
Iseq | nNdd anyep ndo | enyep

enyeA

pozymopuey WBreas

I€S o[ny Burqojedstq A3TIOTAd

8qof o¢ ‘seupyoem (]
6 o[quL

9 o[qul ees pudBey 104

v2'8 |eU'v joutt 6t 668 | 6921 | L°9L 9zel € 668 €8el 9 wve LLvl S
L0°9 |6¥°1 {1221 ve 699 | €421 | 8°1L 1gel 9 699 wel 14 ov°ve % 4§ 14
88°6 |[8L°L |LLOT IS 6L0T} SS21 | L°LS 0821 S 6L0T) 88E1 9 gv-ve SOt € <
gz°'8 J9¢°v jestl 24 LE8 | €2V | V19 g8yl S Les 189St 9 96 °92 0L91 4

8L°8 |Sv°2 |veet ot SEL | SOET | 6°97 19et 4 SEL S8E1 t 02°92 AL | ¢

. o[y | des sy B
b 3 Uy | £%008 - Deg 389§ | NdD | onyep | Iseg idd | snfep
1II4s | 168 91 | -o308{| ndO|enteA ndd | engep
paztmopuey IPreag ey
JUSWIAOIdN] 1188 198 oIny Buryojredsyq L3raorid

sqof g1 ‘seuryowm gy

W - PN < - o ne N o - N - -y e o gt =
- - TN - Ao o e a e R R P =, X i B i Al = - T e v -
kol P T A A X s - L A i - - - e I s -l -
S v e R R AL PN BV PN X T e e o e e . - v
ot - .-~ - - ")‘..ﬂv\ﬂ i o - \4'. - - - ”—I\.N.lr“.ﬁ.al. lw\‘x\. hal g : L S
_ 3 = DR - - B e) d -

‘e wlp db ke w

A

p.d.x;.-bued procedure on each of the problems. The result, as shown in the
Tables, is that the SBII solution is always, without exception, at least as good
as that found by the randomized p.d.r.-based procedure in the same amount of
time, and in the vast majority of the cases it is considerably better. The

typical improvement is somewhere between 4 per cent and 10 per cent.

Acknowledgment
Thanks are due to Steve Lawrence for making his problem set and his

computational results available to us.

References
[1] K. R. Baker, Introduction to Sequencing and Scheduling. Wiley, 1974.

[2] E. Balas, "Machine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm.” Operations Research, 17, 1969, p. 941-957.

[3] J. Carlier, "The One-Machine Sequencing Problem." FEuropean Journal of
Operational Research, 11, 1982, p. 42-47.

(4] R. N. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling.
Addison-Wesley, 1967.

[5] S. French, Sequencing and Scheduling: An Introduction to the
Mathematics of the Job Shop. Wiley, 1982.

f{6] M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Co., 1979,

{71 S. Lawrence, Supplement to "Resource Constrained Project Scheduling:
An Bxperimental Investigation of Heuristic Scheduling Techniques."” GSIA,
Carnegie Mellon University, October 1984.

(8] J. K. Lenatrh. Sequencing by Enumerative Methods. Mathematical Centre
Tract 69, Mathematisch Centrum, Amsterdam.

[B8a] J. K. Lenstra, Personal communication, May 1986.

{937 G. McMahon and M. Florian, "On Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness." Operations Research, 23, 1975, p.
475-482, '

{10] J. P. Muth and G. L. Thompson, Indusirial Scheduling. Prentice-Hall,
1963.

27

k)

ENIEA] RN DN D\ 2 AR BEINOTN 7
DR :,_', h.. ,Q' Y 4",?. [ERINN .,‘5 A‘..:‘_", s »‘\"7‘ : Vntdk;lvif

(11] A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification,
Complexity and Computations. Nijhoff, The Hague, 1976.

(121 R. Roy and B. Sussman, "Leas problemes d’ordonnancement avec
constraintes disjunctives.” Note DS No. 9 bis, SEMA, Paris, 1964.

b\ 1Y JLANPILA I IUN OF TS PaGe (onen Uate aniered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIGNS
BEFORE COMPLETING FORM

3. RECIPIENTTS CATALOG NUNIER Ty
O ‘

L : UM GOVYT ACCESHON NO.
MSRR 525 ﬁg-ﬁnﬂ‘i[
& TITLE (end Subestle) ' _ .

The Shifting Bottleneck Procedure

S. TYPE OF REPORT & PLMOD COVERED

- 4

. PERPORMING ORG. AEFPORT NUNBER

| for Job_Shop Scheduling - -
TAGTHORCE) -)

Joseph Adams, Egon Balas, and Daniel Zawack

NOOO14 60=HnBBihr
gS K 0198

SIS ERroRMNG GROAWITATION NIIE AND ASSREN

Graduste School of Industrial Administration
Carnegie Mellon University

Pittsburgh PA 15213

0. PROGRAM CLEMENT, PHOJECT, TASK |
. AREA & WORK UNIT NUMBERS

1. CANTACLL.IC CFRICT nAnMd ANDO ADDRESS :
Personnel and Training Research Programs

12. REZORT D&TE

July 1986 !

' Office of Naval Research (Code 434)

Arlington VA 22217
' MONITORING AGENCY NAME & ADORRSH(H dilferens from Centrelling Oifies)

H

13. NUMOER OF PAGES
27

e ————
15. SECUNITY CLASS. (of thie ruport)

1

.

i T3a. DECLASSISICATIO I/ Ul ahenALIHG
)

SCHEDULE

'M- OISTRISUTION STATEMENT (ol 251¢ Report)

i : ;
: DISTRIBUTION STATEMENT A ;
' Approved for public release} .
! Distribution Unlimited ;
i . |
1'T- DISTRIGUTION STATEMENT (of the abewrsst sntored in Bloek 20, I ditfesent frem Report) i
L} .
' {
j ;
i 18, SUPPL LMENTARY NOTES - o
: ’
! .
{75, KEY WOROS /Contimas on reveree aide If ary and (donilly by Dlock mumber) . 3
i scheduling

sequencing

heuristics

bottleneck

v

: .
». on reverse olde Il necvesary and identily oy bleck maneer)
ﬁﬁucrl

job shop scheduling.

shed sequences are locally reoptimized.
sachine scheduling problems.

an approximation method for solving the minimum makespan problem of ‘

It sequences the machined one by one, successively, taking;
each time the machine identified as a bottleneck among the machines not yet i
sequenced. Every time after a new machine is sequenced, all previously establi-}
Both the bottleneck identification and i
the loeal reoptimiszation procedures are based on rapeatedly solving certain one-;

Besides this straight version of the Shifting

Lnottlcnock Procedure, we have also implementad a version that-spplies the pro-

00} W73

KDITION OF 1 NOV 69 i8S OBS0LETR
$/M 0102-014- 4601 |

POLA) 3,03 LR N N Yy
RN ?’I‘,n“tm'h?a'& LAY ':;!“,J

]

NN M IOMOREN NS
ST AL L A,

(cont.)

SECUmITY CLASHPICATION OF THIS PAGE (#hen Dale Katered)

L3 N

. Technical Report, July 1986 |

e

v) . O IO DO
By A A A I SO a’i‘s:.L',,ﬁ‘g DA KICEAR K AR
IO I MO W M DU RU L LN N AL AN ¥

20 (continued)
'
cedure to the nodes of a truncated sesrch tree. Computational testing shows that our 3
approach yields consistently better results than other procedures discussed in the
1iterature. A high point of our computational testing occurred when the enumerative
version of the Shifting Bottleneck Procedure found in a little over five minutes an
; optimal schedule to a notorious ten machines/ten jobs problem on which many slgorithus
. have been run for hours without finding an optimal solution. , bved $2

LR S OGO OOUIBGOGIN OGRS
e e R G “a")'t'ﬁ'a“.‘i""x‘f':’ ORI

